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Abstract. We present a method to find the gluon distribution from the F2 proton structure function data
at low-x assuming the Regge behaviour of the gluon distribution function at this limit. We use the leading
order (LO) Altarelli–Parisi (AP) evolution equation in our analysis and compare our result with those
of other authors. We also discuss the limitations of the Taylor expansion method in extracting the gluon
distribution from the F2 structure function used by those authors.

1 Introduction

The measurements of the F2 (proton and deuteron) struc-
ture functions by deep inelastic scattering (DIS) processes
in the low-x region, where x is the Bjorken variable have
opened a new era in parton density measurements [1].
It is important for understanding the inner structure of
hadrons and ultimately of matter. It is also important
to know the gluon distribution inside a hadron at low-x
because gluons are expected to be dominant in this re-
gion. On the otherhand, the gluon distribution cannot be
measured directly from experiments. It is, therefore, im-
portant to measure the gluon distribution G(x,Q2) indi-
rectly from the proton as well as the deuteron structure
functions F2(x,Q2). Here the representation for the gluon
distribution G(x) = xg(x) is used, where g(x) is the gluon
density.

A few papers have already been published [2–9] in this
connection. Here we present an alternative method to ex-
tract G(x,Q2) from the scaling violations of F2(x,Q2)
with respect to lnQ2, i.e. ∂F2(x,Q2)/∂ lnQ2. Our method
is mathematically more transparent and simpler than
those of other authors.

2 Theory

It is shown in [2,8] that the gluon distribution G(x) at
low-x can be obtained by analysing the longitudinal struc-
ture function. Similarly it is also shown in [3–7] that this
distribution can be calculated from the F2 proton struc-
ture function and its scaling violation. Moreover, in [9] we
see that it is also possible to calculate the gluon distri-
bution from the F2 deuteron structure function and its
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scaling violation. The basic idea relies on the fact that
the scaling violation of the F2 structure function arises
at low-x from the gluon distribution alone and does not
depend on the quark distribution. As a demonstration of
this fact, the scaling violation of the sea quark distribu-
tion as a function of x has been illustrated in [3]. Here as
in Figs. 1a,b the scaling violation of the sea quark distri-
bution using the KMRS B− and B0 parametrizations [10]
are demonstrated, respectively. At low-x, actually already
at x = 10−2, the quarks can be neglected in the AP evo-
lution for the number of flavours of nf = 4.

Neglecting the quark the AP evolution equation for
four flavours [3,4] gives

∂F2(x,Q2)
∂ lnQ2 =

5αs

9π

∫ 1−x

0
G(x/(1 − z), Q2)Pqg(z)dz, (1)

where the LO splitting function is

Pqg(z) = z2 + (1 − z2), (2)

and αs is the strong coupling constant.
Now, let 1 − z = y ⇒ dz = −dy. Again z = 0 ⇒ y = 1

and z = 1 − x ⇒ y = x. Therefore (1) gives

∂F2(x,Q2)
∂ lnQ2 =

5αs

9π

∫ 1

x

G(x/z,Q2)(2z2 − 2z + 1)dz. (3)

Now, let us consider the Regge behaviour of the gluon
distribution [11]

G(x,Q2) = Cx−λ(Q2), (4)

where C is a constant and λ(Q2) is the intercept. The
Regge behaviour of the structure function in the large-
Q2 region reflects itself in the small-x behaviour of the
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Fig. 1a,b. Scaling violations of sea quark distributions using the KMRS B− and B0 parametrizations [10] respectively as
in [3]. The solid lines were obtained using the complete AP equations and the dashed lines were obtained neglecting quark
distributions.

quark and the antiquark distributions. Thus the Regge
behaviour of the sea quark and antiquark distribution for
small-x is given by qsea(x) ∼ x−αP corresponding to a
pomeron exchange of intercept αP =1. But the valence
quark distribution for small-x given by qval(x) ∼ x−αR

corresponds to a reggeon exchange of intercept αR = 1/2.
Since the same processes lead to gluon and sea quark dis-
tributions in the nucleon, we expect G(x) ∼ 1/x. The
x-dependence of the parton densities given above is often
assumed at moderate-Q2.

Applying (4) in (3) we get

∂F2(x,Q2)
∂ lnQ2 =

5αs

9π
C

∫ 1

x

x−λ(Q2)zλ(Q2)(2z2 − 2z + 1)dz.(5)

For fixed-Q2, let K(x) = ∂F2(x,Q2)/∂ lnQ2 and A =
5αs/(9π). Thus (5) gives

K(x) = ACx−λ(Q2)
∫ 1

x

(2zλ+2 − 2zλ+1 + zλ)dz. (6)

Taking the logarithm and rearranging the terms (6) gives

λ =
1

lnx

[
ln
{

2
λ + 3

(1 − xλ+3)

− 2
λ + 2

(1 − xλ+2) +
1

λ + 1
(1 − xλ+1)

}]

− 1
lnx

[ln{K(x)/(AC)}] , (7)

⇒ λ − Φ(λ) = 0, (8)

where λ ≡ λ(Q2) and Φ(λ) represents the right hand side
of (7). Now, (8) has been solved numerically using the it-
eration method [12] to calculate the values of λ(Q2) for
different x-values for a fixed value of Q. A simple com-
puter programme for this iteration method is given in Ap-
pendix A. Scaling violation of the F2 structure function,
i.e. K(x) = ∂F2(x,Q2)/∂ lnQ2, and the strong coupling
constant at LO αs are experimental inputs. C is the only
free parameter in our calculation. After the calculation of

λ(Q2) we can calculate G(x,Q2) from (4) for different val-
ues of the free parameter C and compare our results with
those due to other authors.

Now, let us discuss the methods due to other authors.
Prytz reported a method to obtain an approximate rela-
tion between the unintegrated gluon density and the scal-
ing violations of the quark structure function at low-x at
leading order (LO) [3] as well as at next-to-leading order
(NLO) [4]. He expanded G(x/(1−z)) of (1) using the Tay-
lor expansion formula at z = 1/2 to obtain the expression
[3]

G

(
x

1 − z

)
≈ G

(
z =

1
2

)
+
(
z − 1

2

)
G′
(
z =

1
2

)

+
(
z − 1

2

)2 G”
(
z = 1

2

)
2

, (9)

taking the derivative up to second order. This expression
is then inserted in (1) and after integration one gets

∂F2(x)
∂ lnQ2 ≈ 5αs

9π
2
3
G(2x) (10)

for fixed-Q2, which is the main result for the LO [3] anal-
ysis. Using a similar method he obtained the formula for
the NLO [4] analysis,

∂F2(x)
∂ lnQ2 ≈ G(2x)

20
9

αs

4π

[
2
3

+
αs

4π
3.58

]

+
(αs

4π

)2 20
9
N(x,Q2), (11)

where N(x,Q2) is given in [4].
Bora and Choudhury also presented a method [5] to

find the gluon distribution from the F2 proton structure
function and its scaling violation at low-x using the Taylor
expansion method. They also expanded G(x/(1 − z), Q2)
of (1) using the Taylor expansion method about z = 0
taking only the derivative up to first order in the expan-
sion. While expanding they used only the first two terms
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in the infinite expansion series x/(1 − z) = x
∑∞

k=0 z
k to

get an expression. This expression is then inserted in (1)
and after integration one gets

G(x1, Q
2) � 9π

5αs

A(x) + 2B(x)
[A(x) + B(x)]2

∂F2(x,Q2)
∂ lnQ2 , (12)

at

x1 = x +
B(x)

A(x) + B(x)
x.

Sarma and Medhi also obtained a method [9] to find the
gluon distribution from the F2 proton and deuteron struc-
ture functions and their scaling violations at low-x. They
also expanded G(x/(1 − z), Q2) of (1) by using the Tay-
lor expansion method taking only the derivative up to
first order in the expansion. But unlike Bora and Choud-
hury method they considered the whole series x/(1−z) =
x
∑∞

k=0 z
k to get the expression

G

(
x

1 − z
,Q2

)
= G

(
x + x

∞∑
k=1

zk, Q2

)
= G(x,Q2)

+ x

∞∑
k=1

zk ∂G(x,Q2)
∂x

. (13)

Using this relation in (1) and then integrating one obtains
for the proton

G(xp, t) =
9π
5αs

1
A(x)

∂F p
2 (x, t)
∂t

, (14)

and for the deuteron

G(xd, t) =
9
5

[
K1(x)t

∂F d
2 (x, t)
∂t

+ K2
∂F d

2 (x, t)
∂x

+ K3F
d
2 (x, t)

]
, (15)

where xp = x + B(x)/A(x), xd = x + D(x)/C(x) and
t = ln(Q2/Λ2), Λ being the QCD cut-off parameter. Here
A(x), B(x), C(x), D(x),K1(x),K2(x) and K3(x) are some
functions of x mentioned in [9].

Now, let us discuss the limitation of the Taylor expan-
sion method in this regard. Applying the Taylor expansion
[12] for the gluon distribution function in (1), we get

G

(
x

1 − z
,Q2

)
= G

(
x + x

∞∑
k=1

zk, Q2

)

= G(x,Q2) + x

∞∑
k=1

zk ∂G(x,Q2)
∂x

(16)

+
1
2
x2

( ∞∑
k=1

zk

)2
∂2G(x,Q2)

∂x2 + O(x3),

where O(x3) are the higher order terms. Here we have
1 − x < z < 0 ⇒ |z| < 1 which implies that x/(1 − z) =

x
∑∞

k=0 z
k is convergent. In the previous methods, either

the terms beyond second order [3,4] or beyond first or-
der derivatives [5,9] of x are neglected in the expansion
series (16). But in actual practice, this type of simplifi-
cation is not possible because the contributions from the
higher order terms cannot be neglected due to the singular
behaviour of the gluon distribution.

There are some other methods also which are not based
on the Taylor expansion method. Kotikov and Parente
presented [7] a set of formulae to extract the gluon dis-
tribution function from the F2 structure function and its
scaling violation at small-x in the NLO approximation.
They considered for singlet quark and gluon parton dis-
tributions p(x,Q2) ≈ x−δp(Q2) for a Regge-like behaviour
and p(x,Q2) ≈ exp(0.5(δp(Q2) ln(1/x))1/2) for double-
logarithmical behaviour [6] where p ≡ s, g and δs(Q2) 
=
δg(Q2). Then they put these distributions in the AP equa-
tions and solved for the gluon distribution by the standard
moment method. Now for Regge-like behaviour, the gluon
distribution becomes

g(x,Q2) =
1.14

eα(1 + 26.9α)

[
∂F2(x,Q2)
∂ lnQ2

+ 2.12αF2(x,Q2) + O(α2, x1−δ
]
. (17)

for δ = 0.5 and the number of flavours f = 4. Again
for double-logarithmical behaviour the gluon distribution
becomes

g(x,Q2) =
3

4eα
1

(1 + 26α[1/δ̃ − 41/13])

×
[
∂F2(x,Q2)
∂ lnQ2 + O(α2x)

]
. (18)

A different method for the determination of the gluon dis-
tribution at small values of x has been proposed by Ellis,
Kunszt and Levin [6] based on the solution of the AP
evolution equations in the moment space up to next-to-
next-to-leading order (NNLO). In this method the quark
and gluon momentum densities are assumed to behave as
x−w0 where w0 is a parameter the actual value of which
must be extracted from the data. Here the gluon momen-
tum density for four flavours is

xg(x,Q2) =
18/5

PFG(w0)

×
[
∂F2(x,Q2)
∂ lnQ2 − PFF (w0)F2(x,Q2)

]
.(19)

The evolution kernels PFF and PFG calculated in the MS
scheme are expanded up to third order in αs.

3 Results and discussion

We use HERA data taken by the H1 [13] and ZEUS [14]
collaborations where the values of ∂F2(x,Q2)/∂ lnQ2 are
listed for a range of x values at Q2 = 20GeV2. The re-
cent HERA data are parametrized by the H1 [15] and
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Fig. 2a,b. Gluon distribution G(x) by our method from the NMC proton parametrization [17,18] at Q2 = 40, 60, 80 and
100GeV2 respectively with C = 1. In the same figure we include a global fit by MRST [21].

ZEUS [16] collaborations by some appropriate functions
and we calculate ∂F2(x,Q2)/∂ lnQ2 at Q2 = 20GeV2 for
those functions also. We also use the parametrizations of
the recent New Muon Collaboration (NMC) [17,18] F2
proton structure function data from a 15-parameter func-
tion from which also we calculate ∂F2(x,Q2)/∂ lnQ2 at
40GeV2. Now we apply the values of ∂F2(x,Q2)/∂ lnQ2

in (8) to calculate λ numerically by the iteration method
[6] and hence the gluon distribution function G(x,Q2)
for C = 1. We do not consider higher values of C, say
C = 100, because in this case the neglect of the valence
quark distribution xqval ∼ x1/2 is not so correct as the
λ-value is close to -1/2 in quite a broad range of x. More-
over, in this case we obtain xg ∼ x1/2 and xqval ∼ x1/2.
Then also we get xqsea ∼ x1/2. Otherwise it should not
be neglected in (1). Then it is easy to obtain F2 ∼ x1/2

which contradicts the experimental data. For our calcu-
lation the strong coupling constant αs was taken from a
NLO fit [19] to the F2 data yielding αs = 0.180± 0.008 at
Q2 = 50GeV2 corresponding to Λ

(4)
MS

= 0.263±0.042GeV
and αs(Mz2) = 0.113±0.005. This value of αs agrees with
the one given by the Particle Data Group (PDG) [20].

But in our practical calculations we neglect the errors of
αs and Λ which are rather small.

We compare our result with the results of other authors
discussed in the theory as well as the recent MRST global
fit [21].

In Figs. 2a–d we present the gluon distributions G(x)
for different low-x values from the NMC proton data
parametrization [17,18] at Q2 = 40, 60, 80 and 100GeV2

respectively. From the figures it is seen that the results are
almost the same for all Q2-values and G(x) is slowly in-
creasing when x decreases logarithmically. We also present
the MRST global fit [21] result, but its rate of increment
is much higher.

In Fig. 3 we present the gluon distributions G(x) for
different low-x values from the H1 HERA proton data
[13] at Q2 = 20GeV2. The middle line is the result with-
out considering any error in the data. The upper and
lower lines are the results with data adding and subtract-
ing systematic and statistical errors with the middle val-
ues, respectively. As usual the gluon distribution G(x)
increases when x decreases. In the same graph we also
present the G(x) values for the MRST global fit [21] which
is also increasing towards low-x values but with a some-
what smaller rate.
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Fig. 3. Gluon distribution G(x) by our method from the H1
HERA proton data [13] at Q2 = 20GeV2 with C = 1. Here
we present the results for the data (i) without considering the
error (middle), (ii) adding algebrically statistical and system-
atic errors (high) and (iii) substracting algebrically statistical
and systematic errors (low). In the same figures we include a
global fit by MRST [21].

Fig. 4. Gluon distribution G(x) by our method from the H1
HERA proton data parametrization [15] at Q2 = 20GeV2 with
C = 1. In the same figures we include a global fit by MRST
[21].

Fig. 5. Same result as in Fig. 3 from the ZEUS HERA proton
data [14] at Q2 = 20GeV2.

Fig. 6. Same result as in Fig. 4 from the ZEUS HERA proton
data parametrization [16] at Q2 = 20GeV2.

Fig. 7. λ-values by our method from the H1 HERA proton
data [13] at Q2 = 20GeV2 with C = 1. Here we present the
results for the data (i) without considering the error (middle),
(ii) adding algebrically statistical and systematic errors (high)
and (iii) subtracting algebraically statistical and systematic
errors (low).

In Fig. 4 we present the gluon distributions G(x) for
the H1 HERA proton parametrization [15] at Q2 =
20GeV2 for different low-x values. The gluon distribu-
tion G(x) is increasing when x is decreasing. In the same
graph we present the G(x) values for the MRST global fit
[21], which is also increasing towards low-x values with a
somewhat smaller rate.

In Fig. 5 we present the gluon distribution G(x) ZEUS
HERA proton data [14] at Q2 = 20GeV2 for different low-
x values. The descriptions and the results are the same as
the H1 HERA data [13] depicted in Fig. 3.

In Fig. 6 we present the gluon distributions G(x) for
the ZEUS HERA proton parametrization [16] at Q2 =
20GeV2 for different low-x values. The descriptions and
the results are the same as the H1 HERA parametrization
[15] depicted in Fig. 4.

In Fig. 7 we present the value of λ (Lambda) for the H1
HERA proton data [13] for low, middle and high values at
Q2 = 20GeV2 for different low-x values. All the graphs are
almost parallel and the λ-values tend to ∼ 0.5 at lower-x.
That is, the parameter λ has a small dependence on x and
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Fig. 8. Same result as in Fig. 7 from the ZEUS HERA proton
data [14] at Q2 = 20GeV2.

Fig. 9. Comparison of gluon distribution G(x) from the H1
HERA proton data [13] by our method for C = 1 with those
by other methods due to Bora and Choudhury [5] and Prytz
[3]. In the same figure, we include a global fit by MRST [21].

Q2. This behaviour is in good agreement with experimen-
tal data [22], fits [21,23] and with the double-logarithmical
semi-analytical analysis [24–26].

In Fig. 8, we present the λ-values for the ZEUS HERA
proton data [14] in the same way as in Fig. 7 and the
analysis is also the same. For all the graphs λ values tend
to ∼ 0.5 as we approach a lower-x from some higher values
of x.

In Fig. 9, we compare our results for the HERA H1
data (middle value only) [13] at Q2 = 20GeV2 with those
of Bora and Choudhury [5] and Prytz [3]. In the same
figure, we also present the result for the MRST global fit
[21]. For all cases the gluon distribution G(x) is increasing
when x is decreasing but with different rates. The rates of
increment in our result is highest and in MRST is lowest.

4 Summary and conclusion

In this paper we present an alternative method [2–9] to ex-
tract the gluon distribution G(x,Q2) from the scaling vio-
lation of the F2 proton structure function
∂F2(x)/∂ lnQ2 at low-x. We compare our result with those
of other methods due to Bora and Choudhury [5] and
Prytz [3], and with a global fit due to MRST [21]. The
gluon distribution will increase as usual when x decreases.

We discussed the limitations of the Taylor expansion
method [12] in calculating the gluon distribution from the
scaling violation of the F2 structure function at low-x.
Prytz in both LO [3] and NLO [4] and Bora and Choud-
hury in LO [5] used this method to extract the gluon dis-
tribution from the scaling violation of the F2 structure
function at low-x in a slightly different way. But all the
authors neglected the higher order terms in the Taylor ex-
pansion series, which is not a good approximation for the
singular behaviour of the gluon distribution at low-x, be-
cause the contributions from the higher order terms in the
series are not negligible. Sarma and Medhi [9] used this
method in some improved way with a better approxima-
tion; yet the basic approximation of neglecting higher or-
der terms in the expansion series could not be avoided. On
the other hand in the Kotikov and Parente method [7,8]
also these authors approximated their results by neglect-
ing some higher order terms. Moreover, their method is
to some extent complicated. The Ellis, Kunszt and Levin
method [6] neither has been more developed than other
methods. Though their analysis is up to NNLO, the ker-
nels are parameter dependent and the x-ranges are lower
than the HERA region. In the present method of course
we use a free parameter C; yet the other ambiguities due
to the approximation of the Taylor expansion series can
be avoided. Moreover, our method is very simple and the
computer programme can calculate the gluon distribution
immediately when we put in the value of the scaling vio-
lation from experiment.

We can use this method by assuming a double-
logarithmical behaviour [7] of the gluon distribution at
low-x also. The present procedure is a LO analysis only.
But there is a possibility to extend this method to NLO
or higher to have more accurate results.
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Appendix

A simple FORTRAN programme for the calculation of λ
from the scaling violation of the structure function is given
here:
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